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The author describes a study, based on the linearized energy equation, of heat transfer over the ini t ia l  

section of a rectangular channel with a laminar  incompressible flow and both uniform and nonuniform 

temperature fields at the inlet.  Temperature and Nusselt number distributions over the channel perimeter 
are given. 

It has been shown [1] that in the case of laminar flow it is not permissible to apply the resistance law derived for 

circular tubes to other cross sections simply by substituting the hydraulic for the ordinary radius. For example, the resis- 

tance coefficient for a circular tube is given by 

whereas for a rectangular one it is 

W ' =  1 6 / R e ,  

= C/Re, 

where C = 14. 225 for a square section, and C = 24 for a flat channel. This is corroborated by the data of reference [2], 
in which the ratio of the sides of the rectangle is shown to affect the friction coefficient in laminar  flow. It is thus clear 

that in laminar flow the analogy between heat and momentum transfer is not a basis for adapting data on the Nu number 
for a circular tube to a rectangular channel.  

It should be noted that laminar  flow over the ini t ia l  section of a tube has been observed even at Reynolds numbers 
greater than critical.  It was shown in [2] and [3], for example, that there is a region of laminar  flow, corresponding to 

a dip in the pressure curve, in the ini t ia l  section of a rectangular channel with Re > Recr. The presence of a region of 

laminar heat transfer in the ini t ia l  section of a tube has been noted experimentally in a number of papers, e . g . ,  in 

[4, 5, 6], where laminar  flow occurred right up to Re = 105. The theoretical study of laminar heat transfer in the ini t ia l  

section of a rectangular channel has great practical significance. 

Since the temperature f idd  at the inlet  to the individual channels in regenerators and compact heat exchangers is 

nonuniform, there is considerable interest in an examinat ion of the influence of nonuniformity of the temperature field 

at the inlet  on heat transfer conditions in the ini t ia l  section of a channel and on the temperature distribution over its 

perimeter. 

The energy equation of the boundary layer for a steady flow of incompressible fluid with constant physical proper- 

ties and without energy dissipation has the form [7] : 

( or aT (o v 

OT OT OT 
In this equation let us compare the convective terms t~ Ox Oz 

Since the flow near each of the walls in the ini t ia l  section of a rectangular channel is similar to that over an infi-  

nite flat plate, to compare the convective terms in the energy equation, we may use the solution of the Blasius problem 

for the velocity distribution in flow over a flat plate, which also holds for the temperature field when Pr = 1. It was 

shown in [8] that the ratio v - -  u - -  has an almost constant value, equal to 0.5, in the part of the bound- 
@ Ox pr  = 1 

ary where the longitudinal velocity component changes from u = 0 to u = 0.95; only at a considerable distance from the 

wall, practically outside the limits of the boundary layer, does it  begin to vary appreciably. 

Thus, we may write 

v - -  u = c o n s t ,  ~ - -  u - -  - -  c o n s t ,  

@ Ox Oz Ox 
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and the energy equation for three-dimensional  flow in the boundary layer takes the form 

where 

OT I 

Ox 

[ O~T O~T ) 
= a \5-jy  + a z  ' 

= 1 +  - -  u + w, . u . 
Ox Oz Ox 

(2) 

At the inlet  to the channel the veloci ty  is constant over the section and equal to U; moreover,  it  has been shown 
in [9] that replacing the longitudinal veloci ty  component u by its mean value  over the section U leads to only small  
changes in the solution of  the equation, which can be taken into account by introducing into the equation a correction 
s. We then have 

OT /O T o,r  

The correction s was evaluated in [8]: 

1 

=0.346Pr  a 

Equation (3) is the equation of  unsteady hea t  conduction, and methods of  solving i t  are widely known [10, 11]. 

Introducing the dimensionless variables ~ = x/h,  77 = y/h ,  g = z /h  where h is h a l f  the distance between the wails 
of the rectangular  channel perpendicular to the y axis, and the dimensionless temperature  0 = (T - T0)/T 0 (T O is the 
characteris t ic  temperature  of  the fluid at  the inlet  section), we obtain 

aO a ~ 0 02 0 
s Pe  - -  + - -  (4) 

0~ 0 ~2 0 ~2 

In the case of  given heat  flux through the walls of  the rectangular  channel,  the boundary conditions may be writ- 
ten: 

= 0 ,  O = ~ y ~ + y v ' 6  2 + ~ + Y ~ 2 ,  

O0 
= • 1, - -  •  or '+- K1v}, 

O0 
= • %, - • Ko, ~: KI,  E. 

O~ 

(5) 

Here go = z0/h is the distance from the x axis to the wall  in the direct ion of  the z axis. 

The solution of  (4) for in i t i a l  and boundary conditions (5) may  be represented in the form of a sum of  the solutions 
of the two following equations for the temperature distribution in an infini te flat channel: 

r = 0 ,  Oy = 13y ~ + Yy ~ ,  
Pe  a_ Oy _ O~Oy 

"q= + l, - -  ~ K O y  ~Klv  ~; 
a~ 

(6) 

~Pe O~z _ 0 2 0 ~  
, (7) 

a ~ a ~2 ~ = • ~.o, o. o~ = +_ Ko~ _+ K,z ~. 
o~ 

It is easily seen that the sum of  the solutions of  (6) and (7) is a solution o f  (4) that satisfies the boundary conditions 
(5): 

0 -= 0 v -4- 0~. 
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Solutions of (6) were obtained in [12], and applying these to the initial section of  the channel (~ -< 100) for Re 
-> 3 .  10 ~, we obtain 

O=2(Kou~2Yu-~u) ( ~ ierfc ( ! - ~ V ~ )  ~ p- - -~  - -  + 

-6 8K~ u ~- ~ i 3 erfc " I q- ~ y N + ~ . ~l 2 @ 
sPe 

- 6 2 ( K ~ 1 7 6  / ~p---e i e r f c (  ~ ~  "6 

1 / /  ~ i3erfc ( ~  V 'pe) 

(s) 

Knowing the temperature distribution inside the channel, we can find the mean temperature of the fluid and the 
temperature of the wall and from these calculate the Nu number. Finally, we obtain 

Nu [~ = ~o = AJB1, Ai = Ko, 4- KI~ }, 

B1 =2(Kou--2yy--~y)] /~/~Pe ierfc ( J - ~  ] / ~ - ~ ) +  ~u'6 + ysvl2-6 

"~-8~1y$ V~-/$ Pe 13 eric ( 1 - ~ '  ~ 2  )~-1.1284 ( K o ~ - - 2 y , ~ o - - ~ ) ] / ~  -6 

' :.o ~ P e  + - - 3 -  -6  
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Fig. 1. Temperature distribution over the 
perimeter of a rectangular channel z0/h = 
= 5 (a - over the long side, b - over the 
short side) for uniform temperature field 
at the inlet and given heat flux, Re = 104, 
Pr = 0.7: 1, 4) g = 20; 2, 5) 50; 8, 6) 100. 

K~ ~ - ]  
4- + �9 (e) 
' s P e  

Nu]~=~ = A2/B2, ,4: = Ko~, § Ki~, ~, 

B2 = 1.1284 (Koy - - 2 y g  - -  ~u) ]/-~/~ Pe 4- 

@ 0.752KlyE. l/~/sPe -6 fJy -6 yy -6 

-6 2 (Koz --2yfio --  ~z) V ~/s pe x 

-6 8K1~ ~ 1/r~/s pe i~erfc x 

x - - 

+ 

L :.-o~e + 3 
Kog ~ 4- ly g" 

-6 ~ Pe + . (10) 

For a uniform temperature field at the inlet and constant heat flux 
over the perimeter and along the length of the channel (K0y = K0 z = K0, 
K~y = K1z = 0), we have 

1 
N u  I~=l = -D'  

D = I  1284 ~ + 2  ierfc ' sPe 1, ]/  ~.o~ Pe 
The formula for Nu [~=~0 is obtained by replacing ~0 - ~ by 1 - 77. 

Figure 1 gives the temperature distribution over the perimeter of a rectangular channel at various sections for a 
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uniform temperature field at the inlet.  The channel section is a rectangle with a ratio of the sides 1 : 5. 

It is seen from the graph that a temperature increase occurs in the channel corner, the width of the region of in-  
creased temperature being identical  for both the short and the long sides of the rectangle. Therefore, the greater the 
ratio of the sides of a rectangular channel, the greater the portion of the short side occupied by a region of increased 
temperature. 
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Fig. 2. Nu number distribution over the 
short side of a rectangular channel with 

z0fa = 5 for uniform temperature field 

at the inlet  and given heat flux, Re ; 
= 104 , Pr= 0.7: 1) g =  10, 2) 20, 3) 30, 

4) 40, 5) 50. 

Fig. 3. Temperature distribution over the 

perimeter of a square channel with nonuni-  

form temperature field at the inlet  and giv- 

en heat flux, Re = 10 4, Pr = 0. 7, K 0 = 10, 

7 = - 1 :  1) 1~= O, 2) 5, 3) 10, 4) 20. 

Figure 2 shows the Nu number distribution over the short side of a rectangular channel at various distances from 

the inlet,  tt is seen that there is a considerable reduction in the Nu number in the corner. 

A nonuniform temperature field at the inlet  leads to a rather complicated temperature distribution over the perim- 

eter of a rectangular channel  and, in particular, of a square channel (Fig. 3), where the temperature increase is much 

stronger in the corner than in the middle of the channel.  

If the temperature field at the channel in le t  is such that the temperature of the layers nearest the wall is lower 
than that of the fluid in the middle  of the channel, then the mean  mass temperature of the fluid near the inlet  is higher 

than the wall temperature. At certain points on the channel section, with increasing distance from the inlet,  the mean 

fluid temperature becomes equal to the wall temperature at that point, which corresponds to Nu = ~o. Figure 4 gives 
the Nu number distribution over the side of a square at channel sections lying at different distances from the inlet.  Ex- 

aminat ion of the curves shows that at ~ = 5 there is one break in the Nu number distribution, corresponding to the point 

= 0.45, while at a distance g = 10 from the inlet  Nu = ~oo at two points: 7? = 0. 65 and ~} = 0. 97. 
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For a given constant wall temperature Eq. (4) must be solved with 
the following boundary and  ini t ia l  conditions: 

~ = + - 1 } 0 = 0 ,  
~ =  -+~-o 

= 0 ,  0 = 0y 0 z = ( 1 - -  ~y'~ - -  ~y nq2) ( 1 - -  ~z~-- ~z{l). (11) 

Here O = (T w - T ) / ( T  w -- To). 

The product of the solutions of the two following equations 0 = OyO z 
is a solution of (4) with conditions (1t): 

Fig. 4. Distribution of Nu number over 

the perimeter of a square channel for non- 

uniform temperature field at the inle t  and 

given heat flux, Re = 10 4, Pr = 0.7, K 0 = 

= 1 0 , [ = - 1 :  1) g=  5, 2) 10, 3) 20. 

aOy a~ov ~ --- -!-_ i, Oy =0, 
, ( 1 2 )  

B p e  a ~  - a ~  2 ~ --0, ov = I - ~y~i - 7 v ~ 2 ;  

P e  O0~ a~oz ~ = + ~.o, o~ = o ,  
- -  ( i s )  

a~ a~ ~' ~ =o, o~ --1 - -  13~- ? ~ .  
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Using the solution of  (12) obtained for Re - 3 " 10 s and [ -< 100, we get: 

[ 81;y• i'erfc (1T-~-~ I / / s  ( ~ q  ' {} :--- L - - -pT  -[- (y ,  q- , , - - 1 )  erfc 1 / ~ )  

2 y ~  I" 
a p e  ' 

Nuln=l -- At 08 ~=i 

Nu/~=~ ~ _ A2 As = 00 i 
B ' 8,:, ~=~,, 

B =  
[ 8  ,z["./' 2 ( 'y~- - l )  ,~/- ~ y~2 

C ol/~(~pe)'/~ _t_ C 0 ~sPe q- l - -  3 

~P-e F/-~ \ ~ - P e - )  ,-]-2(yy--1) dPe q-,1 3 ~-P-Y " 

4- 

(14) 

(15) 

NOTATION 

x - longitudinal  coordinate; y, z - transverse coordinates; u - longitudinal  ve loc i ty  component; v, w - trans- 
verse veloci ty  components; U - fluid ve loc i ty  at channel in le t  section; T - fluid temperature;  c~ - thermal  diffusivity; 
k - thermal  conductivity;  211, 2z 0 - height and width of rectangular  channel; Re, Pc, Pr - Reynolds, Peclet ,  and 
Prandtl numbers. 
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